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TRIM28 inhibits alternative lengthening 
of telomere phenotypes by protecting SETDB1 
from degradation
Chuanle Wang1, Zhou Songyang1,2,3,4 and Yan Huang1*   

Abstract 

Background:  About 10–15% of tumor cells extend telomeres through the alternative lengthening of telomeres 
(ALT) mechanism, which is a recombination-dependent replication pathway. It is generally believed that ALT cells are 
related to the chromatin modification of telomeres. However, the mechanism of ALT needs to be further explored.

Results:  Here we found that TRIM28/KAP1 is preferentially located on the telomeres of ALT cells and interacts with 
telomeric shelterin/telosome complex. Knocking down TRIM28 in ALT cells delayed cell growth, decreased the level 
of C-circle which is one kind of extrachromosomal circular telomeric DNA, increased the frequency of ALT-associated 
promyelocytic leukemia bodies (APBs), led to telomere prolongation and increased the telomere sister chromatid 
exchange in ALT cells. Mechanistically, TRIM28 protects telomere histone methyltransferase SETDB1 from degradation, 
thus maintaining the H3K9me3 heterochromatin state of telomere DNA.

Conclusions:  Our work provides a model that TRIM28 inhibits alternative lengthening of telomere phenotypes by 
protecting SETDB1 from degradation. In general, our results reveal the mechanism of telomere heterochromatin 
maintenance and its effect on ALT, and TRIM28 may serve as a target for the treatment of ALT tumor cells.
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Introduction
Telomeres are special structures at the ends of eukaryotic 
chromosomes, which is composed of TTA​GGG​ repeat 
sequence and a protein complex called "telosome" or 
"shelterin" [1, 2]. Telomeres protect the integrity and sta-
bility of chromosomes and avoid chromosome terminal 
fusion and DNA damage response [3]. Due to end-repli-
cation problem, telomeres of human normal somatic cells 
would gradually erode with cell division [4], when telom-
eres shorten to a certain extent, cells will stop dividing 

and enter a state of senescence, so telomeres are called 
the "life clock" [5–7]. Telomere dysfunction would induce 
multiple human aging related diseases including dyskera-
tosis congenita (DC), idiopathic pulmonary fibrosis (IPF), 
and cancer [8–10].

On the other hand, tumor cells are able to break 
through "Hayflick limit", i.e., to achieve cell immor-
talization. 85–90% of tumor cells extend telomeres by 
activating telomerase, while 10–15% of them utilize tel-
omerase-independent mechanism called the alternative 
lengthening of telomeres (ALT) [11]. ALT is a homolo-
gous recombination (HR)-directed telomere synthesis 
pathway [12]. There are obvious differences in telomere 
length between ALT cells and telomerase positive cells, 
which may be caused by the rapid deletion or lengthening 
of telomeres. The chromosomal telomere length is highly 
heterogeneous [13]. In addition, the extra-chromosomal 
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telomere fragments, including C-circles and C-over-
hangs, are released in ALT cells due to the collapse of 
replication forks [14]. Another remarkable feature of ALT 
is the existence of ALT-associated promyelocytic leuke-
mia bodies (APBs). APBs function as nuclear structures 
in which telomere DNA replication and recombination 
occurs spatiotemporally. In ALT cells, each APB contains 
on average 2–5 telomeres [15, 16].

The mutation or loss of α-thalassemia/mental retarda-
tion syndrome, X-linked (ATRX) and death domain-asso-
ciated protein (DAXX) seems to be the key determinant 
of the emergence and maintenance of ALT [17]. Accord-
ing to previous studies, ATRX protein was low or absent 
in 86% of human ALT cell lines [18]. Re-introducing 
wild-type ATRX in ALT cells inhibits the ALT activ-
ity of tumor cells [19]. ATRX and DAXX form a chro-
matin remodeling complex, which is responsible for the 
deposition of histone H3.3 on telomere [20]. In ATRX/
DAXX mutant ALT cells, histone H3.3 is not assembled 
correctly to achieve chromatin compression [21]. The 
unique epigenetic status of telomere, including histone 
or telomere DNA modification caused by ATRX/DAXX 
mutation and the telomeric nucleosome density provide 
chromatin adaptability for HR-mediated ALT pathway.

Initial studies suggested that RAD51-mediated recom-
bination is the basis for the occurrence of ALT [22, 23]. 
Telomeric  repeat-containing RNA (TERRA) forms 
R-Loop structure on telomere and triggers telomere fra-
gility. RAD51 participates in the formation of R-loop and 
promotes homologous recombination [24]. However, 
several studies believed that RAD51 is not necessary for 
break-induced telomere synthesis (BITS) mediated ALT 
[25–27]. At present, the break-induced replication (BIR) 
is considered to be the basis of the ALT pathway and is 
independent of RAD51 [25].

Telomere belongs to heterochromatin region and 
enriches many heterochromatin-related epigenetic pro-
teins. ALT is corelated to the epigenetic modification 
state of telomere DNA, which is also one of the most 
important mechanisms regulating the structural stability 
of telomere. ATRX interacts with DNA methyltransferase 
1 (DNMT1), and the deletion of ATRX alters the levels 
of DNA methylation in subtelomere regions [28]. Previ-
ously we found hetrochromatin protein 1 binding protein 
3 (HP1BP3) increases the level of H3K9me3 modifica-
tion on telomere and stabilizes the compacted structure 
of telomere chromatin to inhibit ALT phenotypes and 
ALT tumor cell growth [29]. However, a few studies have 
suggested that the ALT pathway is promoted by hetero-
chromatin formation, Gauchier et al. identified telomere-
associated proteins in mouse embryonic stem cells by 
proteomics of isolated chromatin segments (PICh) [30]. 
They showed that SETDB1 is located on telomeres, while 

SUV39H is mainly enriched on pericentromeres. The 
deletion of SETDB1 decreases the level of heterochroma-
tin marker H3K9me3 on telomere and the frequency of 
APBs, while the deletion of SUV39H increases the telo-
meric H3K9me3 level [31]. Their findings are inconsist-
ent with previous reports [32]. These controversy results 
indicate that the ALT process is sophisticated and needs 
to be explored more precisely.

TRIM28 or KAP1, is a member of the tripartite motif 
family, has received extensive attention since it was 
discovered in 1996 [33, 34]. It was first described as a 
repressor member of the Krüppel-associated Box zinc 
finger protein (KRAB-ZFP) family [34]. With deepening 
exploration, TRIM28 has been found to be involved in a 
wide range of biological processes in cells. For example, 
it facilitates the formation of heterochromatin, mediates 
DNA damage response, stimulates epithelial-mesenchy-
mal transition (EMT) and helps to maintain the pluri-
potency of stem cells. Sumoylation of TRIM28 mediates 
gene silencing by recruiting H3K9-specific histone meth-
yltransferase SETDB1 and nucleosome remodeling and 
deacetylation (NuRD) complex [35]. TRIM28 helps to 
maintain the pluripotent state of mouse embryonic stem 
cells (mESCs), and the absence of TRIM28 significantly 
down-regulates the pluripotency markers Oct4, Sox2 and 
Nanog, thus induces stem cells to differentiate into prim-
itive ectoderm lineage [36]. During early mouse embry-
onic development, E3 ubiquitin ligase Dcaf11 targets 
TRIM28 and promotes its degradation, thus relieving the 
transcriptional inhibition of Zscan4 and activating the 
ALT pathway of mESCs [37]. Endogenous retroviruses 
pose a great threat to the stability of the genome. TRIM28 
complex facilitates to silence the transcription of retrovi-
ruses, and the deletion of TRIM28 leads to a series of up-
regulation of endogenous retroviruses (ERVs) in mESCs 
[38]. Consistently, TRIM28 loss of function upregulates 
ERVs and facilitates the induced pluripotent stem cell 
(iPSCs) reprogramming [39]. The SUMO modification 
of CDK9 residues by TRIM28 prevented the interaction 
between CDK9 and Cyclin T1 and effectively inhibited 
the expression of HIV-1 [40]. Upon DNA double-strand 
breaks, ATM and/or ATR-dependent DNA damage 
response pathways are activated. Phosphorylatation of 
TRIM28 by ATM interferes with its binding to chromatin 
remodeling factors, increasing the accessibility of chro-
matin to DNA repair proteins [41].

TRIM28 is highly expressed in many malignant 
tumors, its high expression in ovarian cancer and cervi-
cal cancer promotes tumor invasion and metastasis [42, 
43]. The interaction between TRIM28 and TRIM24 pro-
tects TRIM24 from SPOP-mediated ubiquitin degrada-
tion and promotes the progression of prostate cancer 
[44]. TRIM28 also regulates the epithelial-mesenchymal 
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transition (EMT) pathway and enable tumor cells to 
acquire mesenchymal phenotype and become more 
aggressive [45].

Telomere associated proteins play an important role 
in maintaining telomere integrity. Although multiple 
progress has been made in the study of telomere associ-
ated proteins, the identification of new telomere associ-
ated proteins is of great significance for understanding 
telomere regulation. In 2009, researchers developed a 
method called proteomics of isolated chromatin seg-
ments (PICh) [30], in which they used telomere probes to 
pull-down and identify by mass spectrometry telomere-
associated proteins. Many new telomere-associated pro-
teins were identified and studied later on. For example, 
BUB3 promotes telomere chromosome replication, and 
HMBOX1 participates in telomere maintenance in ALT 
cells [48, 49]. TRIM28 was also identified as telomere-
associated proteins in both telomerase positive HeLa and 
ALT-mediated Wi38-VA13 cells [30]. In 2017, another 
group also found that TRIM28 locates on telomeres of 
many species by systematic phylointeractomics screen-
ing, including human and mouse, suggesting the evo-
lutionarily conserved role of TRIM28 on telomere [50]. 
However, the precise role of TRIM28 on telomere main-
tenance remained largely unknown. In this study, we 
briefly demonstrated the function and mechanism of 
TRIM28 in the ALT-mediated telomere maintenance. 
Our findings provide new insights into the occurrence of 
ALT and may provide potential targets for the treatment 
of ALT tumor cells.

Materials and methods
Cell lines and antibodies
The U2OS, Wi38-VA13 and HEK293T cells were cul-
tured in dulbecco’s modified eagle medium (DMEM) 
containing 10% fetal bovine serum (FBS) and cultured 
in an incubator containing 5% CO2 at 37 ℃. Human 
full-length TRIM28 cDNA was cloned into pDEST27 
(Invitrogen) with GST tag and Plenti-HAFL-puro with 
HA-Flag (HAFL) double tags.

Cells were infected with lentivirus corresponding to 
shRNAs or overexpression vectors and selected with 
puromycin. Sense and antisense DNA oligos designed 
according to siRNA sequences were synthesized and 
cloned into pLKO.1-GFP vector. The siRNA sequences 
are: siTRIM28-1, 5′-CCUggCUCUgUUC​UCU​gUCCU-
3′; siTRIM28-2, 5′-CUgAgACC​AAA​CCUgUgCUUA-3′; 
siLuci, 5′-CUU​ACG​CUG​AGU​ACU​UCG​A -3′.

Antibodies used in this study include: rabbit poly-
clonal anti-TRIM28 (Abcam), rabbit polyclonal anti-Flag 
(Abmart), mouse monoclonal anti-tubulin (Sigma), rabbit 
polyclonal anti-GAPDH (Abmart), rabbit polyclonal anti-
53BP1 (Novus), rabbit polyclonal anti-GST (Abmart), 

mouse monoclonal anti-PML (Millipore), rabbit poly-
clonal anti-Histone H3 (Abcam), rabbit polyclonal anti-
H3K9me3 (Abcam) and rabbit polyclonal anti-SETDB1 
(Proteintech).

C‑circles (CC) assay
C-circle assay was performed as described previously 
[46]. 250  ng genomic DNA was digested with 0.25  µl 
Hinf1 and 0.25 µl Rsa1 (4 U/µg) at 37 °C for 4 h, diluted 
to the designed concentration (25, 50, or 100 ng of DNA 
per 10  µl volume) and combined in a 10  µl of reaction 
mixture (5  µg BSA, 1  mM dATP, 1  mM dTTP, 1  mM 
dGTP, Ф29 buffer, and 5 U Ф29 DNA polymerase (NEB). 
The reaction system was incubated at 30  °C for 8 h in a 
PCR instrument, then inactivated at 65  °C for 20  min. 
The remaining sample was diluted to 20 μl with 2 × SSC, 
denatured in 95 °C for 10 min and quickly cooled down 
to 4  °C, as the sample for internal reference. 10  μl of 
each sample was used for southern blotting. The ampli-
fied C-circle samples were hybridized with C-rich tel-
omere probe, and the samples for internal reference were 
hybridized with Alu probe. TeloC probe: 5′-Biotin-CCC​
TAA​CCC​TAA​CCC​TAA​-3′; Alu probe: 5′-Biotin-GGC​
CGG​GCG​CGG​TGG​CTC​ACG​CCT​GTA​ATC​CCA​GCA​
-3′.

Telomere DNA‑FISH
DNA-FISH was performed as previously described [47]. 
Cells were fixed 30  min on ice with 4% paraformalde-
hyde. After washing with 1 × PBS for 3 times, the glass 
slides were dehydrated with 70%, 90% and 100% etha-
nol respectively and dried under the condition of RT for 
15 min. The FITC-labeled (CCC​TAA​)3 probe (0.5 μg/ml) 
(Panagene, Korea) was added to the samples. After dena-
turing 5 min at 80  °C, slides were incubated at 37  °C in 
wet chamber for 2 h. Then the slides were washed with 
washing solution (70% formamide, 10  mM Tris pH 7.4) 
for 3 times. Finally, the slides were stained with DAPI and 
detected by fluorescence microscope. The fluorescence 
intensity was quantified by ImageJ and Student’s t-test 
was calculated in statistics.

Chromosome orientation fluorescent insitu hybridization 
(CO‑FISH)
Cells were subcultured in 5′-bromo-2′-deoxyuridine 
(BrdU, 10  μM; Sigma) for 14  h and then cultured with 
Nocodazol (0.5  μg/ml) for another 6  h. Then cells were 
digested and treated with 0.075  M KCl hypotonic solu-
tion, fixed and dropped on slides, CO-FISH was per-
formed using a Cy3-labeled (TTA​GGG​)3 probe and a 
FITC-labeled (CCC​TAA​)3 probe as described previously 
[47].
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GST Pull‑down assay
Cell samples were lysed with NETN lysis buffer for 
30  min and oscillated every 10  min. Samples were cen-
trifuged at 12,000  rpm at 4 ℃ for 10  min. 20  μl super-
natants were reserved as input. The rest of the samples 
were transfered into a new tube, added with 20  μl pre-
cleared GST beads and rotated for over 4 h. The samples 
were washed with 400 μl precooled NETN lysis for three 
times. 20 μl NETN lysate and 5 μl protein loading buffer 
(5×) were added to each tube as IP sample. The input and 
IP samples were analyzed with 10% SDS-PAGE gel and 
detected by western blot.

immunofluorescence‑fluorescent in situ hybridization 
(IF‑FISH)
Cells of about 70% density on the slide was washed 
with PBS for 3 times, fixed with 4% paraformaldehyde 
(PFA) for 30  min and treated with appropriate amount 
of permeabilization solution for 30 min. The slides were 
blocked with 5% goat serum at room temperature for 1 h, 
incubated with the primary antibody at 4 ℃ overnight 
or at room temperature for 2  h, washed with PBS for 3 
times, and incubated with the second antibody at room 
temperature for 1 h. The slides were refixed with 4% PFA 
for 30 min, dehydrated with 70%, 90% and 100% ethanol, 
incubated with fluorescent-labeled telomere probe at 
85 ℃ for 5 min and then 37 ℃ overnight. After washed 
twice, the slides were dried and stained with DAPI.

Results
TRIM28 is preferentially located on the telomere of ALT 
cells and interacts with telosome/shelterin complex
In order to explore whether TRIM28 is exactly located 
on telomere and whether its telomere localization has 
cellular specificity, we overexpressed HA-FLAG tagged 
TRIM28 in telomerase positive HTC75 cells and ALT-
dependent U2OS cells respectively (Fig.  1A). Telomere 
chromatin immunoprecipitation (ChIP) assays showed 
that TRIM28 is located on telomeres, and TRIM28 is 
preferentially located on telomeres of ALT -dependent 
U2OS cells compared to telomerase positive HTC75 
cells (Fig. 1B, C).

We wondered how TRIM28 is recruited to telomere. 
Telomere is bond by telosome/shelterin complex; thus, 
we performed the GST pul-down assay. Plasmids that 
express TRIM28 with GST tag and telosome/shelterin 
subunits with HA-Flag double tags were co-transfected 
into HEK293T cells. The result showed that TRIM28 
interacts with TRF1, TRF2 (Fig. 1D). At the same time, 
we performed bimolecular fluorescent complimentary 
(BiFC) experiment. Two proteins with potential inter-
action are fused with the N-terminal and C-terminal 
of GFP respectively. When the two candidate proteins 

bind to each other, the N-terminal and C-terminal of 
GFP protein will be close to each other and emit fluo-
rescence, which can be detected by flow cytometry 
and microscopy (Additional file  1: Fig. S1A) [51]. BiFC 
results showed that TRIM28 interacts with shelterin 
subunits (Additional file 1: Fig. S1B, C). The interaction 
of TRIM28 with shelterin components indicates that 
TRIM28 may localize to telomere via its association with 
shelterin subunits.

TRIM28 knockdown increases telomere 
dysfunction‑induced foci
To gain insight into the function of TRIM28 in ALT 
cells, we designed and cloned two shRNAs in vectors 
with GFP fluorescence to knock down TRIM28 in U2OS 
cells (Additional file  2: Fig. S2A). Q-PCR and western 
blot results showed that the two shRNAs efficiently 
reduce the mRNA and protein level of TRIM28 in U2OS 
(Fig. 2A, B). After infecting U2OS cells with shRNA len-
tivirus for 36  h, the fluorescence signal appears in the 
cells under the fluorescence microscope (Additional 
file 2: Fig. S2A). Compared with the negative control, the 
growth of TRIM28-deficient U2OS cells slowed down 
(Fig. 2C). We then detected the telomeric DNA damage 
response after knocking down TRIM28 in U2OS cells. 
53BP1 represents the DNA damage response and its 
colocalization with telomere indicates telomere-specific 
DNA damage foci called telomere dysfunction-induced 
foci (TIF) [52]. The results showed that TRIM28 knock-
down increases TIF signals significantly (Fig. 2D, E).

TRIM28 knockdown reduces the C‑circle level of ALT cells
C-circle is one of the multiple biomarkers of ALT cells 
[46]. Some studies have suggested that the production of 
C-circle is related to telomere DNA damage, especially 
double strand breaks [53]. We then detected the C-circle 
levels in U2OS cells after TRIM28 deletion, and found 
that TRIM28 deletion significantly reduces the C-circle 
levels (Fig. 3A, B). Similar data was observed in another 
ALT cell line Wi38-VA13 (Fig. 3C). Consistently, overex-
pression of TRIM28 significantly increased the level of 
C-circle in U2OS cells (Fig. 3D, E).

TRIM28 deletion promotes APB formation and telomere 
lengthening
APB is a special nuclear body that exists only in ALT 
cells. As the active center of ALT, APB includes tel-
omere DNA and its associated shelterin complex 
[15]. We found that interfering with the expression of 
TRIM28 significantly increases the level of APBs, indi-
cating a higher level of telomere homologous recombi-
nation (HR) after TRIM28 depletion (Fig. 4A, B). Thus, 
we analyzed the telomere length of U2OS after TRIM28 
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deletion. Both DNA-FISH and Q-FISH results showed 
that telomere lengthens significantly after TRIM28 dele-
tion (Fig.  4C, D, Additional file  3: Fig. S3). High fre-
quency of telomere sister chromatid exchange (T-SCE) 
is another important biological marker of ALT cells. 
We found that TRIM28 deletion leads to a significant 
increase in T-SCE frequency in U2OS cells (Fig. 4E, F). 
These results indicate TRIM28 depletion may promote 
ALT phenotypes in U2OS cells.

TRIM28 promotes H3K9me3 occupancy on telomere 
in ALT cells
TRIM28 is widely involved in the formation of hetero-
chromatin [34, 54, 55]. The IF result showed that his-
tone H3K9me3 modification decreases significantly 
after TRIM28 knockdown (Fig. 5A), indicating TRIM28 
is required for maintaining heterochromatin H3K9me3 
levels. By telomere chromatin immunoprecipitation 
(ChIP), we detected H3K9me3 modification at telomere 
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in TRIM28 overexpressed U2OS cell lines and found 
that TRIM28 promotes H3K9me3 modification enriched 
at telomeres (Fig. 5B, C).

TRIM28 promotes the protein stablity of SETDB1
Histone methyltransferase SETDB1 catalyzes the 
trimethylation of histone H3 and maintain the 

transcriptional siliencing of chromatin. Interestingly, 
SETDB1 interacts with TRIM28 to mediate retrovi-
rus silencing [55–57]. We found that upon the deletion 
of TRIM28 in U2OS cells, SETDB1 levels, both in total 
and at telomeres, are significantly decreased (Fig.  6A, 
B), accompanied by a decrease in SETDB1 protein level 
as well as the histone modification H3K9me3 level 
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used for the C-circle assay. An Alu repeat probe served as internal control. B Quantification histogram of data from (A). Intensity values from TRIM28 
knockdown cells were normalized to the control cells. Error bars indicate standard error (n = 3). ***P < 0.001, Student’s t-test. C C-circle formation 
assays via ∅29 amplification and slot blotting in VA13 cells. D Overexpression of TRIM28 in U2OS cells was detected with TRIM28 antibodies. E 
C-circle formation assays via ∅29 amplification and slot blotting in TRIM28 overexpressed U2OS cells



Page 8 of 13Wang et al. Cell Biosci          (2021) 11:149 

(Fig.  6C). These results suggested that TRIM28 may be 
required to maintain the protein stability of SETDB1.

We treated the TRIM28-overexpressing U2OS cells 
with protein synthesis inhibitor cycloheximide (CHX) 
for different time period, and western blot results 
showed that overexpression of TRIM28 stabilizes the 
protein level of SETDB1 by delaying its degradation rate 
(Fig.  6D, E). Previous studies have shown that TRIM28 
protects TRIM24 from SPOP-mediated ubiquitin deg-
radation and promotes the progression of prostate can-
cer [44]. TRIM28 was also reported to stabilize and 
promote the accumulation of α-synuclein (α-Syn) and 
tau proteins in the nucleus of neurons, and promote 
the progression of neurodegenerative diseases [58]. We 
speculated that TRIM28 may also facilitate to maintain 
the protein stability of SETDB1 in a similar way. We 
transfected the ubiquitin plasmid HA-Ub in TRIM28-
deleted U2OS cells. Expectedly, the ubiquitin level of 
SETDB1 increased after TRIM28 deletion (Fig.  6F). 
Furthermore, after 36  h of infection with two shRNA 
lentivirus targeting SETDB1 respectively, the cell mor-
phology was changed, which is similar to that after dele-
tion of TRIM28 (Additional file 4: Fig. S4A), and deletion 
of SETDB1 also decreased the level of C-circle in U2OS 
cells (Additional file  4: Fig. S4B). In order to elucidate 
the SETDB1-TRIM28 axis more precisely, we further 
overexpressed SETDB1 in TRIM28-deficient U2OS cell 
lines and found reintroduced SETDB1 seems to partially 
rescue the decreased level of C-circle in TRIM28-defi-
cient cells (Fig. 6G, H). Collectively, our results showed 
that SETDB1 may function in phenocopy with TRIM28 
and TRIM28 may stabilize SETDB1 on telomere.

Discussion
TRIM28 was first described as nuclear corepressor for 
KRAB domain-containing zinc finger proteins (KRAB-
ZFPs), which mediates gene silencing [33]. We found 
that TRIM28 interacts with telosome/shelterin subunits 
TRF1, TRF2 (Fig. 1D), suggesting that TRIM28 may play 
an important role in telomere maintenance. As TRIM28 
was preferentially located on the telomere of ALT cells 

(Fig.  1B, C), we speculated TRIM28 may regulate tel-
omere maintenance in ALT cells.

ALT is a telomere lengthening pathway mainly based 
on homologous recombination (HR), accompanied by 
extensive genome rearrangement and endogenous DNA 
damage. C-circle is one of the most significant biologi-
cal characteristics of ALT tumor cells [46]. However, 
C-circles have also been found in cells under replica-
tion stress with no other ALT phenotypes [59]. Also, it 
was reported that the production of C-circle is related 
to the collapse of replication forks caused by excessive 
telomere replication stress [14]. In our study, TRIM28 
deletion caused a decrease in the H3K9me3 level of 
telomere DNA (Fig.  5B, C), accompanied by the emer-
gence of DNA damage response (Fig.  2D, E). Although 
the heterochromatin state of telomere is not conducive 
to telomere replication, the decrease of H3K9me3 in 
the whole cell cycle may accumulate more DNA dam-
age response and eventually increase the DNA replica-
tion stress. Thus we speculated that the production of 
C-circle is the result of the crosstalk between replication 
stress and telomere chromatin state.

A recent study has found that Dcaf11 targets TRIM28 
for ubiquitination-mediated degradation in mouse 
embryonic stem cells to remove heterochromatic 
H3K9me3 at telomere regions and activate the Zscan4-
mediated ALT mechanism [37]. The negative roles of 
TRIM28 and telomeric H3K9me3 in ALT are consist-
ent to our results. Zscan4 is only expressed in two-cell 
embryos and a small proportion of embryonic stem cells 
at a given time [60], suggesting that it may not be the tar-
get for TRIM28 to regulate the ALT pathway in cancer 
cells. Our studies suggest that TRIM28 may directly tar-
get SETDB1 and participate in the regulation process of 
ALT.

We found that TRIM28 stabilizes SETDB1 to maintain 
the modification level of telomere H3K9me3 (Fig.  6A–
C). It has been reported that SETDB1-dependent tel-
omere heterochromatin is the cause for promoting 
ALT, while SUV39H1 is not required for maintainence 
of telomere heterochromatin state [31]. The precise 

(See figure on next page.)
Fig. 4  TRIM28 deletion promotes APB formation and telomere extension. A IF-FISH of TRIM28 KD U2OS cells was performed using a telomere probe 
(green) and antibodies against PML (red). DAPI was used to stain nuclei. Arrows indicate colocalization signals. B Results from (A) were quantified. 
About 200 cells were observed and those with ≥ 5 APBs were counted as positive. Error bars indicate standard error (n = 3). ***P < 0.001, Student’s 
t-test. C Telomere length of U2OS cells was measured by telomere DNA-FISH after TRIM28 knockout. DAPI was used to stain chromosomes. D Data 
from (C) were quantified to assess relative telomere length, more than 150 cells were observed for each cell line. **P < 0.01, Student’s t-test. E T-SCEs 
in TRIM28-depleted U2OS cells were shown. Briefly, after the chromosome was fixed and digested by exonuclease III, Cy3-labeled (TTA​GGG​)3 (red 
signal) and FITC-labeled (CCC​TAA​)3 (green signal) fluorescent probes were used for in situ hybridization, the single strand region showed a single 
fluorescent signal, and the recombination region showed yellow signal due to the existence of double strands. The enlarged image shown the 
typical T-SCEs. F Quantification of (E). More than 200 chromosomes were examined. **P < 0.01, Student’s t-test
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molecular mechanism of this difference is elusive. It is 
worth noting that TRIM28, as an E3 ligase that catalyzes 
SUMO2-PCNA conjugation and effectively resolves 
transcription-replication conflict (TRC). The deletion 

of TRIM28 will lead to the accumulation of RNAPII at 
the TRC sites and induce DNA damage [61]. Whether 
this process is involved in the activation of ALT path-
way needs to be further explored. Although our BiFC 

DAPI H3K9me3 Merge

shLuci

shTRIM28-1

shTRIM28-2

A

10% input

TRIM28

Vector

Ig
G

H3
K9

m
e3

H3

ChIP

(T
TA

GG
G)

3
C

H3 H3K9me3
0.0

0.5

1.0

1.5

2.0

Vector
TRIM28

*
**

Fo
ld

 e
nr

ic
hm

en
t r

el
at

iv
e

to
 in

pu
t

B

Fig. 5  TRIM28 promotes H3K9me3 occupancy on telomere in ALT cells. A IF assay of TRIM28-deficient U2OS cells was performed using antibodies 
against H3K9me3. B Telomere ChIP analysis in U2OS cells with overexpressed TRIM28 or vector were performed using the indicated antibodies. 
Rabbit IgG served as a negative control. The precipitated DNA was slot blotted and probed with biotin-labeled telomere and Alu probes. C Relative 
signals from (B) were quantified and normalized to histone H3 signals. *P < 0.05, **P < 0.01, Student’s t-test

(See figure on next page.)
Fig. 6  TRIM28 positively regulates the protein stablity of SETDB1. A IF-FISH of TRIM28 KD U2OS cells was performed using a telomere probe 
(green) and antibodies against SETDB1 (red). Arrows indicate co-stained signals. B 200 cells were analyzed for each line and those with ≥ 5 
SETDB1-telomere co-localized foci were counted as positive. Error bars represent SD (n = 3). ***P < 0.001, Student’s t-test. C Cells from (A) were 
lysed for western blot analysis with the indicated antibodies. D TRIM28 overexpressing U2OS cells were treated with cycloheximide for indicated 
timespan and the protein level of SETDB1 was detected by western blot. E The signal of (D) were quantified. F Cells from (A) were transfected with 
HA-Ub, treated with DMSO or MG132 for 4 h, then the ubiquitin level of SETDB1 was detected by western blot. G TRIM28-deficient U2OS cell lines 
were overexpressed with Vector control or SETDB1 and cell lysates were detected by western blot with the indicated antibodies. H Genomic DNA 
from cell lines (G) were used for the C-circle assay
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data confirmed that TRIM28 interacts with TPP1 (Addi-
tional file 1: Fig. S1B, C), which is a shelterin subunit for 
recruiting telomerase, immunoprecipitation combined 
with telomerase activity assay (IP-TRAP) of TRIM28 
found that TRIM28 does not interact with telomerase 
(data not shown), so it further confirmed the role of 
TRIM28 in ALT cells. Collectively, our work combined 
revailed a role of TRIM28 in telomere heterochromatin 
maintenance. TRIM28 may provide a potential thera-
peutic target for ALT tumors.
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